نگاشت های خطی حافظ توابع طیفی اساسی و بسته بودن برد عملگرها
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور
- author میثم اسدی پور
- adviser ثریا طالبی شیرین حجازیان
- publication year 1388
abstract
چکیده ندارد.
similar resources
بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها
در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده است. در پایان نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.
full textنگاشت های جمعی حافظ ضرب جردن صفر روی جبرهای عملگرها
اگر ? نگاشت جمعی پوشا بین دو جبر عملگری باشد که در رابطه خاصی صدق می کند تحت شرایط خاص نشان می دهیم ? یک همومورفیسم جردن ضرب شده با یک عضو مرکزی است. در حالت خاص اگر k و h دو فضای هیلبرت با بعد نامتناهی(حقیقی یا مختلط) باشند(a=b(hو(b=b(kآنگاه عدد ثابت غیر صفر c و نگاشت وارونپذیر خطی یا مزدوج خطی u از h به k وجود دارند که در شرط خاصی صدق می کند.
15 صفحه اولتعیین ساختار نگاشت های حافظ خودتوانی ضرب جردن عملگرها
فرض کنید (b(x جبرتمامعملگرهایخطی وکرانداررویفضایباناخمختلط x و? نگاشت خطی و پوشا روی (b(x کهحافظخودتوانی غ?رصفرضرب جردنعملگرهاباشد. در دوحالتز?رموضوعموردنظرراتعق?ب میکن?م: اول: فرضکن?د? نگاشت خطی و پوشاکهحافظخودتوانی غ?رصفرضرب جردنعملگرهاروی mn بابعدحداقل3باشد. دوم:فرضکن?د x فضایباناخمختلط با بعد نامتناهی و ? نگاشت خطی و پوشا کهحافظخودتوانی غ?رصفرضرب جردنعملگرهاروی (b(x باشد.
نگاشت های خطی حافظ معکوسپذیری درc))m2
ریاضیدانان بسیاری روی قضیه معروف گلیسون-کاهانه-زلازکو مطالعه و تحقیق کرده اند. در این پایان نامه، دو تعمیم از این قضیه بیان می شوند. همچنین خواص تابعهای خطی حافظ وارون پذیری از یک جبر باناخ یکدار به فضایm_n (c) بررسی خواهند شد.در حالت خاصn=2 ، فرم کلی این تابع ها، در حالتی که ناپیوسته هستند بیان می شوند. واژگان کلیدی: جبر باناخ، تابع خطی، وارون پذیری، ماتریس و ایده ال.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023